Skip to main content

Latest publications

Jun 26th, 2017
Middle East respiratory syndrome coronavirus experimental transmission using a pig model
21. Vergara-Alert J, Raj VS, Muñoz M, Abad FX, Cordón I, Haagmans BL, Bensaid A, Segalés J.

Dromedary camels are the main reservoir of Middle East respiratory syndrome coronavirus (MERS-CoV), but other livestock species (i.e., alpacas, llamas, and pigs) are also susceptible to infection with MERS-CoV. Animal-to-animal transmission in alpacas was reported, but evidence for transmission in other species has not been proved. This study explored pig-to-pig MERS-CoV transmission experimentally. Virus was present in nasal swabs of infected animals, and limited amounts of viral RNA, but no infectious virus were detected in the direct contact pigs. No virus was detected in the indirect contact group. Furthermore, direct and indirect contact pigs did not develop specific antibodies against MERS-CoV. Therefore, the role of pigs as reservoir is probably negligible, although it deserves further confirmation.

Transboundary and Emerging Diseases
Mar 8th, 2017
SARS-CoV-encoded small RNAs contribute to infection-associated lung pathology
20. Morales, L., Oliveros, J. C., Fernandez-Delgado, R., tenOever, B. R., Enjuanes, L., Sola, I.

Severe acute respiratory syndrome coronavirus (SARS-CoV) causes lethal disease in humans, which is characterized by exacerbated inflammatory response and extensive lung pathology. To address the relevance of small non-coding RNAs in SARS-CoV pathology, we deep sequenced RNAs from the lungs of infected mice and discovered three 18–22 nt small viral RNAs (svRNAs). The three svRNAs were derived from the nsp3 (svRNA-nsp3.1 and -nsp3.2) and N (svRNA-N) genomic regions of SARS-CoV. Biogenesis of CoV svRNAs was RNase III, cell type, and host species independent, but it was dependent on the extent of viral replication. Antagomir-mediated inhibition of svRNA-N significantly reduced in vivo lung pathology and pro-inflammatory cytokine expression. Taken together, these data indicate that svRNAs contribute to SARS-CoV pathogenesis and highlight the potential of svRNA-N antagomirs as antivirals.

Volume 21, Issue 3, p344–355
Cell Host Microbe
Apr 1st, 2017
Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches
Okba NMA, Raj VS, Haagmans BL

Middle East respiratory syndrome coronavirus (MERS-CoV) is a cause of severe respiratory infection in humans, specifically the elderly and people with comorbidities. The re-emergence of lethal coronaviruses calls for international collaboration to produce coronavirus vaccines, which are still lacking to date. Ongoing efforts to develop MERS-CoV vaccines should consider the different target populations (dromedary camels and humans) and the correlates of protection. Extending on our current knowledge of MERS, vaccination of dromedary camels to induce mucosal immunity could be a promising approach to diminish MERS-CoV transmission to humans. In addition, it is equally important to develop vaccines for humans that induce broader reactivity against various coronaviruses to be prepared for a potential next CoV outbreak.

Volume 23, Pages 49-58
Current Opinion in Virology
Mar 1st, 2017
Serologic Evidence for MERS-CoV Infection in Dromedary Camels, Punjab, Pakistan, 2012–2015
18. Saqib M, Sieberg A, Hussain MH, MansoorMK, Zohaib A, Lattwein E, Müller MA, Drosten C, and Corman VM

Dromedary camels from Africa and Arabia are an established source for zoonotic Middle East respiratory syndrome coronavirus (MERS-CoV) infection among humans. In Pakistan, we found specific neutralizing antibodies in samples from 39.5% of 565 dromedaries, documenting significant expansion of the enzootic range of MERS-CoV to Asia.

Volume 23, Number 3, p.550-551
Emerging Infectious Diseases
Feb 1st, 2017
Livestock susceptibility to Middle East respiratory syndrome coronavirus
16. Vergara-Alert, J; van den Brand, J; Widagdo, W; Muñoz, M; Raj, VS; Schipper, D; Solanes, D; Cordón, I; Bensaid, A; Haagmans, B; Segalés, J.

Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible.

Volume 23, Number 2, p.232-240
Emerg Infect Dis.
Feb 1st, 2017
Evaluation of a panel of antibodies for the immunohistochemical identification of immune cells in paraffin-embedded lymphoid tissues of new- and old-world camelids
Uhde AK, Lehmbecker A, Baumgärtner W, Spitzbarth I.

Different species of camelids play an important role in the epidemiology of various emerging infectious diseases such as Middle East respiratory syndrome. For precise investigations of the immunopathogenesis in these host species, appropriate immunohistochemical markers are highly needed in order to phenotype distinct immune cells populations in camelids. So far, specific immunohistochemical markers for camelid immune cells are rarely commercially available, and cross-reactivity studies are restricted to the use of frozen dromedary tissues. To bridge this gap, 14 commercially available primary antibodies were tested for their suitability to demonstrate immune cell populations on formalin fixed paraffin-embedded (FFPE) tissue sections of dromedaries, Bactrian camels, llamas, and alpacas in the present study. Out of these, 9 antibodies directed against CD3, CD20, CD79α, HLA-DR, Iba-1, myeloid/histiocyte antigen, CD204, CD208, and CD68 antigen exhibited distinct immunoreaction patterns to certain camelid immune cell subsets. The distribution of these antigens was comparatively evaluated in different anatomical compartments of thymus, spleen, mesenteric, and tracheobronchial lymph nodes. The presented results will provide a basis for further investigations in camelids, especially with respect to the role of the immune response in certain infectious diseases, which harbor a considerable risk to spill over to other species.

Volume 184, Pages 42-53
Veterinary Immunology and Immunopathology
Oct 26th, 2016
Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses
13. Rabouw, H. H., Langereis, M. A., Knaap, R. C. M., Dalebout, T. J., Canton, J., Sola, I., Enjuanes, L., Bredenbeek, P. J., Kikkert, M., de Groot, R. J., and Frank J.M. van Kuppeveld, F. J. M.

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infections that can be life-threatening. To establish an infection and spread, MERS-CoV, like most other viruses, must navigate through an intricate network of antiviral host responses. Besides the well-known type I interferon (IFN-α/β) response, the protein kinase R (PKR)-mediated stress response is being recognized as an important innate response pathway. Upon detecting viral dsRNA, PKR phosphorylates eIF2α, leading to the inhibition of cellular and viral translation and the formation of stress granules (SGs), which are increasingly recognized as platforms for antiviral signaling pathways. It is unknown whether cellular infection by MERS-CoV activates the stress response pathway or whether the virus has evolved strategies to suppress this infection-limiting pathway. Here, we show that cellular infection with MERS-CoV does not lead to the formation of SGs. By transiently expressing the MERS-CoV accessory proteins individually, we identified a role of protein 4a (p4a) in preventing activation of the stress response pathway. Expression of MERS-CoV p4a impeded dsRNA-mediated PKR activation, thereby rescuing translation inhibition and preventing SG formation. In contrast, p4a failed to suppress stress response pathway activation that is independent of PKR and dsRNA. MERS-CoV p4a is a dsRNA binding protein. Mutation of the dsRNA binding motif in p4a disrupted its PKR antagonistic activity. By inserting p4a in a picornavirus lacking its natural PKR antagonist, we showed that p4a exerts PKR antagonistic activity also under infection conditions. However, a recombinant MERS-CoV deficient in p4a expression still suppressed SG formation, indicating the expression of at least one other stress response antagonist. This virus also suppressed the dsRNA-independent stress response pathway. Thus, MERS-CoV interferes with antiviral stress responses using at least two different mechanisms, with p4a suppressing the PKR-dependent stress response pathway, probably by sequestering dsRNA. MERS-CoV p4a represents the first coronavirus stress response antagonist described.
PLoS Pathog. 12
May 16th, 2017
Dual Plug-and-Display Synthetic Assembly Using Orthogonal Reactive Proteins for Twin Antigen Immunization
Brune KD, Buldun CM, Li Y, Taylor IJ, Brod F, Biswas S, Howarth M.

Engineering modular platforms to control biomolecular architecture can advance both the understanding and the manipulation of biological systems. Icosahedral particles uniformly displaying single antigens stimulate potent immune activation and have been successful in various licensed vaccines. However, it remains challenging to display multiple antigens on a single particle and to induce broader immunity protective across strains or even against distinct diseases. Here, we design a dually addressable synthetic nanoparticle by engineering the multimerizing coiled-coil IMX313 and two orthogonally reactive split proteins. SpyCatcher protein forms an isopeptide bond with SpyTag peptide through spontaneous amidation. SnoopCatcher forms an isopeptide bond with SnoopTag peptide through transamidation. SpyCatcher-IMX-SnoopCatcher provides a modular platform, whereby SpyTag-antigen and SnoopTag-antigen can be multimerized on opposite faces of the particle simply upon mixing. We demonstrate efficient derivatization of the platform with model proteins and complex pathogen-derived antigens. SpyCatcher-IMX-SnoopCatcher was expressed in Escherichia coli and was resilient to lyophilization or extreme temperatures. For the next generation of malaria vaccines, blocking the transmission of the parasite from human to mosquito is an important goal. SpyCatcher-IMX-SnoopCatcher multimerization of the leading transmission-blocking antigens Pfs25 and Pfs28 greatly enhanced the antibody response to both antigens in comparison to the monomeric proteins. This dual plug-and-display architecture should help to accelerate vaccine development for malaria and other diseases.

doi: 10.1021/acs.bioconjchem.7b00174
Bioconjug Chem. 2017 May 5.
May 5th, 2017
The Growing Threat of Pandemics: Enhancing Domestic and International Biosecurity
A Scowcroft Institute of International Affairs White Paper

The threat posed by pandemics grows alongside increased globalization and technological innovation. Distant cultures can now be connected in a day’s time, and international trade links global health and economic prosperity. This report details nine priority areas and accompanying action items that will help to address current pandemic response problems.

Developing centralized leadership; coordinating existing agencies and departments; reforming WHO; and providing adequate funding to establish sufficient supplies, infrastructure, expertise ,and institutions are paramount to success in pandemic response.

The reports stresses that Foreign aid for global health and related investments has never been more important to international security and US national security

The Bush school of government and public services
Jan 13th, 2017
The N-terminal domain of Schmallenberg virus envelope protein Gc is highly immunogenic and can provide protection from infection
Kerstin Wernike, Andrea Aebischer, Gleyder Roman-Sosa & Martin Beer

Schmallenberg virus (SBV) is transmitted by insect vectors, and therefore vaccination is one of the most important tools of disease control. In our study, novel subunit vaccines on the basis of an amino-terminal domain of SBV Gc of 234 amino acids (“Gc Amino”) first were tested and selected using a lethal small animal challenge model and then the best performing formulations also were tested in cattle. We could show that neither E. coli expressed nor the reduced form of “Gc Amino” protected from SBV infection. In contrast, both, immunization with “Gc Amino”-encoding DNA plasmids and “Gc-amino” expressed in a mammalian system, conferred protection in up to 66% of the animals. Interestingly, the best performance was achieved with a multivalent antigen containing the covalently linked Gc domains of both, SBV and the related Akabane virus. All vaccinated cattle and mice were fully protected against SBV challenge infection. Furthermore, in the absence of antibodies against the viral N-protein, differentiation between vaccinated and field-infected animals allows an SBV marker vaccination concept. Moreover, the presented vaccine design also could be tested for other members of the Simbu serogroup and might allow the inclusion of additional immunogenic domains.

Nature Scientific Reports 7, Article number: 42500 (2017)


Main menu