Skip to main content
Feb 17th, 2016
Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels.
Widagdo W, Raj VS, Schipper D, Kolijn K, van Leenders GJLH, Bosch BJ, Bensaid A, Segalés J, Baumgärtner W, Osterhaus ADME, Koopmans MP, van den Brand JMA, Haagmans BL

Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor—dipeptidyl peptidase 4 (DPP4)—is expressed in the upper respiratory tract epithelium of camels but not in that of humans. Lack of DPP4 expression may be the primary cause of limited MERS-CoV replication in the human upper respiratory tract and hence restrict transmission.

90:4838–4842. doi:10.1128/JVI.02994-15
J Virol
Jan 1st, 2016
An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels
Haagmans BL, van den Brand JMA, Raj VS, Volz A, Wohlsein P, Smits SL, Schipper D, Bestebroer TM, Okba N, Fux R, Bensaid A, Solanes Foz D, Kuiken T, Baumgärtner W, Segalés J, Sutter G, Osterhaus ADME

Middle East respiratory syndrome coronavirus (MERS-CoV) infections have led to an ongoing outbreak in humans, which was fueled by multiple zoonotic MERS-CoV introductions from dromedary camels. In addition to the implementation of hygiene measures to limit further camel-to-human and human-to-human transmissions, vaccine-mediated reduction of MERS-CoV spread from the animal reservoir may be envisaged. Here we show that a modified vaccinia virus Ankara (MVA) vaccine expressing the MERS-CoV spike protein confers mucosal immunity in dromedary camels. Compared with results for control animals, we observed a significant reduction of excreted infectious virus and viral RNA transcripts in vaccinated animals upon MERS-CoV challenge. Protection correlated with the presence of serum neutralizing antibodies to MERS-CoV. Induction of MVA-specific antibodies that cross-neutralize camelpox virus would also provide protection against camelpox

351(6268):77-81. doi:10.1126/science.aad1283
Science
Feb 1st, 2016
Neurotropic virus infections as the cause of immediate and delayed neuropathology
Ludlow, M., Kortekaas, J., Herden, C. et al

A wide range of viruses from different virus families in different geographical areas, may cause immediate or delayed neuropathological changes and neurological manifestations in humans and animals. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the central nervous system, frequently leaving the patient or affected animal with a poor or fatal prognosis. Mechanisms that govern neuropathogenesis and immunopathogenesis of viral infections are highlighted, using examples of well-studied virus infections that are associated with these alterations in different populations throughout the world. A better understanding of the molecular, epidemiological and biological characteristics of these infections and in particular of mechanisms that underlie their clinical manifestations may be expected to provide tools for the development of more effective intervention strategies and treatment regimens.

131: 159. doi:10.1007/s00401-015-1511-3
Acta Neuropathol

Pages

Main menu